

AVC

PRIMARY STUDIES

- Screening Echo
- Serial Screening Echo
- Post-Myocardial Ischemia/Infarction Echo
- Post-Surgical Echo

SPECIALTY STUDIES

- Emergency Echo
- Vascular Aorta Imaging
- Non-Cardiac Scanning
- Customized Studies

SPECIALTY ANALYSIS

- Strain
- •Strain rate

 Doppler Analysis of Diastolic function, Transvalvular velocities and Valve regurgitation

Basic Screening Echo

Π

View	<u>Mode</u>	Measurement	<u>Parameter</u>
Parasternal Short-axis	→ 2-D → Tissue Doppler M-mode →	LV endo and epi areas Tissue Velocity WT, LV dimensions	LV mass, S & SR endo & epi V & SR FS, EF, WT, LV Mass
Parasternal Long-axis	→ 2-D → Tissue Doppler	LV endo & epi areas Aortic annulus diameter Tissue Velocity	LV mass SV/CO
Apical Four-chamber	 Pulsed Doppler Tissue Doppler Color Doppler M-mode 	Mitral inflow Mitral annulus velocity Mitral inflow propagation velocity	E, A E' Vp
Apical Five-chamber	> Pulsed Doppler	Mitral inflow/ LVOT outflow LVOT flow velocity	IVRT SV/CO

Standard M-mode Imaging for Analysis

O

O

M-mode Imaging

AVC

Parasternal Short Axis Papillary Muscle Level

Standardized Measuring Plane: Short Axis-Mid Ventricle - Papillary Muscle Level

AVC

12/13/2011 11:11:18 AM 0.5 1.0-1.5 2.0

Short Axis Measurements

AVC

12/13/2011 11:10:51 AM

O

O

Short Axis View Measurement Medial

AVC

12/13/2011 11:10:51 AM

O

O

v

127 HR

Short Axis View Measurement Lateral

0.5

1.0

1.5-

12/13/2011 11:10:51 AM

O

O

Π

Orthogonal Plane Parasternal Long Axis Measurement at Papillary Muscle Level

O

O

12/13/2011 11:11:52 AM

Parasternal Long Axis Measurement Toward Apex

O

O

Π

node

Limitations of M-mode

AVC

Assessing LV function in mice and rats is typically assessed by M-Mode

Pros: Simple and fast Cons: Imprecise

• Sampling along a single interrogation line

(may over/under estimate LV function depending on where the regional dysfunction is located relative to the M-mode cursor placement

- Does not detect wall motion abnormalities
- May not pick up subtle changes in function
- Rate and Load dependent

Speckle tracking and strain analysis

Included in:

- Post-Infarction/Ischemia studies
- Post-Surgical studies (AB)
- Can order as a separate analysis at a any time

The assessment of strain by speckle tracking is a semiautomated process whose speed depends more on the quality of the image and hardware than on the operator.

O

O

O

O

Π

O

AVC

Migrino et al. JASE (20)4.

O

O

AVC

Migrino et al. JASE (20)4.

- Surgeries other than MI or ischemiareperfusion
- Aortic banding procedures
- Transplant procedures (heart or stem cell)
- Other surgeries or procedures that require more scrutiny of LV function (systolic or diastolic)

Speckle tracking-derived global Scirc efficiently detects acute and chronic LV dysfunction, accurately tracks the progression of TAC-induced heart failure, and is reflective of the fibrotic changes induced by TAC.

Vivid 7: established in mice and rats

Am J Physiol Heart Circ Physiol 297: H811–H820, 2009.

AVC

Diastolic strain rates may be used as an additional surrogate of ventricular fibrosis and segmental relaxation abnormalities

Vivid 7: established in mice and rats

Am J Physiol Heart Circ Physiol 297: H811–H820, 2009.

Am J Physiol Heart Circ Physiol 297: H811–H820, 2009.

- Strain
- Strain rates
- Diastolic function

Assessed based on three Doppler-derived parameters:

E/E'
Vp
IVRT/RR

Another index is E/A; however, distinct E and A peaks are generally not discernible in anesthetized rodents

Diastolic Dysfunction – Mitral Inflow

Diastolic Dysfunction – Vp

AVC

Vp is relatively independent of changes in preload and heart rate and also closely reflects tau

Diastolic Dysfunction – Vp

O

O

Π

Diastolic Function - IVRT

O

Normal Rat Renal Ultrasound

AVC

2/23/20 10.02:20:43 PM

O

O

%

Rat Model of Polycystic Kidney Disease

AVC

26

Cost Structure

AVC

PRIMARY STUDIES

- •Screening Echo \$75
- Serial Screening Echo \$75
- Post-Myocardial Ischemia/Infarction Echo \$90
- Post-Surgical Echo \$90

SPECIALTY STUDIES

- Emergency Echo \$125
- Vascular Aorta Imaging \$80
- Non-Cardiac Scanning \$40
- Customized Studies (TBD)

SPECIALTY ANALYSIS

- Strain \$10
- •Strain rate \$6

 Doppler Analysis of Diastolic function, Transvalvular velocities and Valve regurgitation \$6

The core is not a business and does not attempt to generate net revenue.

The Core's only mission is to support and enable experiments by other Investigators.

- 1. Echo can be a useful tool to assess cardiac function in rodents
- 2. A comprehensive scan yields a lot of information on systolic and diastolic function along with SV and CO
- 3. An initial comprehensive scan will allow you to go back later and reanalyze your data